方程2x^-(「3 +1)x+m=0的两根为sinθ,cosθ,θ∈(0,2∏),求(1)sinθ/1-cotθ+cosθ/1-tanθ;(2)m
问题描述:
方程2x^-(「3 +1)x+m=0的两根为sinθ,cosθ,θ∈(0,2∏),求(1)sinθ/1-cotθ+cosθ/1-tanθ;(2)m
答
sinθ/(1-cotθ)+cosθ/(1-tanθ)
=sinθ+cosθ
=(√3 +1)/2
sinθ+cosθ=(√3 +1)/2
sinθcosθ=m/2
(sinθ+cosθ)^2=1+2sinθcosθ=1+m=1+√3/2
m=√3/2