已知实数abc≠0,且三个一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0求证,它们
问题描述:
已知实数abc≠0,且三个一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0求证,它们
不可能都有两个相等的实数根 貌似要用反证法.
答
假设他们都有两个相等的实数根,那么三个方程的△=b^2-4ac=0即b^2-4ac=0①c^2-4ba=0②a^2-4bc=0③由①得,a=b^2/4c,分别代入②③得c^2-b^3/c=0④b^4/16c^2-4bc=0⑤因为abc≠0所以由④知 c^3=b^3=>c=b⑥由⑤知b^4=64bc^...