设函数f(x)=4x-14x+1(1)解不等式f(x)<1/3;(2)求函数f(x)的值域.

问题描述:

设函数f(x)=

4x-1
4x+1
(1)解不等式f(x)<
1
3
;(2)求函数f(x)的值域.

(1)将f(x)的解析式代入不等式得:

4x-1
4x+1
1
3

整理得:3•4x-3<4x+1,即4x=22x<2=21
∴2x<1,
解得:x<
1
2

则不等式的解集为{x|x<
1
2
};
(2)法一:f(x)=
4x-1
4x+1
=1+
-2
4x+1

∵4x>0,∴4x+1>1,
∴-2<
-2
4x+1
<0,
∴-1<1+
-2
4x+1
<1,
则f(x)的值域为(-1,1);
法二:∵y=f(x)=
4x-1
4x+1

∴4x=
y+1
1-y
>0,即
y+1
y-1
<0,
可化为:
y+1>0
y-1<0
y+1<0
y-1>0

解得:-1<y<1,
则f(x)的值域为(-1,1).