一道定积分的不等式证明题

问题描述:

一道定积分的不等式证明题
设Pn(x)为n次多项式,求证:
∫(a,b)|Pn'(x)|dx

数学人气:334 ℃时间:2020-04-06 19:21:27
优质解答
设a≤x1∫(a,b)|Pn'(x)|dx=|∫(a,x1)Pn'(x)dx|+|∫(x1,x2)Pn'(x)dx|+...+|∫(xk,b)Pn'(x)dx|
=|Pn(x1)-Pn(a)|+|Pn(x2)-Pn(x1)|+...+|Pn(xk)-Pn(b)|
≤|Pn(x1)|+|Pn(a)|+|Pn(x2)|+|Pn(x1)|+...+|Pn(xk)|+|Pn(b)|
≤Max|Pn(x)|+Max|Pn(x)|+...+Max|Pn(x)|=2k*Max|Pn(x)|
≤2n*Max|Pn(x)|
我来回答
类似推荐

设a≤x1∫(a,b)|Pn'(x)|dx=|∫(a,x1)Pn'(x)dx|+|∫(x1,x2)Pn'(x)dx|+...+|∫(xk,b)Pn'(x)dx|
=|Pn(x1)-Pn(a)|+|Pn(x2)-Pn(x1)|+...+|Pn(xk)-Pn(b)|
≤|Pn(x1)|+|Pn(a)|+|Pn(x2)|+|Pn(x1)|+...+|Pn(xk)|+|Pn(b)|
≤Max|Pn(x)|+Max|Pn(x)|+...+Max|Pn(x)|=2k*Max|Pn(x)|
≤2n*Max|Pn(x)|