证明定积分不等式
问题描述:
证明定积分不等式
如何证明这个积分不等式 π/6
数学人气:895 ℃时间:2020-05-03 16:21:56
优质解答
因为当x∈(0,1)时,1/√(4-x^2-x)>1/√(4-x^2)
则∫(0,1)1/√(4-x^2-x)dx>∫(0,1)1/√(4-x^2)=arc sin(x/2)|(0,1)
=arc sin(1/2)=П/6,左边得证.
而当x∈(0,1)时,1/√(4-x^2-x)=(1/√2)*1/√(2-x^2/2-x/2)>(1/√2)
*1/√(2-x^2)
则∫(0,1)1/√(4-x^2-x)dx>∫(0,1)(1/√2)*1/√(2-x^2)=(1/√2)*
arc sin(x/√2)|(0,1)=П/4√2,右边不得证.
题目有误,其实若设I=∫(上限1,下限0) dx/根号(4-x^2-x),
则I∈(П/6,П/4),范围最小也是I∈(П/4√2,arc sin√3/3).
则∫(0,1)1/√(4-x^2-x)dx>∫(0,1)1/√(4-x^2)=arc sin(x/2)|(0,1)
=arc sin(1/2)=П/6,左边得证.
而当x∈(0,1)时,1/√(4-x^2-x)=(1/√2)*1/√(2-x^2/2-x/2)>(1/√2)
*1/√(2-x^2)
则∫(0,1)1/√(4-x^2-x)dx>∫(0,1)(1/√2)*1/√(2-x^2)=(1/√2)*
arc sin(x/√2)|(0,1)=П/4√2,右边不得证.
题目有误,其实若设I=∫(上限1,下限0) dx/根号(4-x^2-x),
则I∈(П/6,П/4),范围最小也是I∈(П/4√2,arc sin√3/3).
我来回答
类似推荐
答
因为当x∈(0,1)时,1/√(4-x^2-x)>1/√(4-x^2)
则∫(0,1)1/√(4-x^2-x)dx>∫(0,1)1/√(4-x^2)=arc sin(x/2)|(0,1)
=arc sin(1/2)=П/6,左边得证.
而当x∈(0,1)时,1/√(4-x^2-x)=(1/√2)*1/√(2-x^2/2-x/2)>(1/√2)
*1/√(2-x^2)
则∫(0,1)1/√(4-x^2-x)dx>∫(0,1)(1/√2)*1/√(2-x^2)=(1/√2)*
arc sin(x/√2)|(0,1)=П/4√2,右边不得证.
题目有误,其实若设I=∫(上限1,下限0) dx/根号(4-x^2-x),
则I∈(П/6,П/4),范围最小也是I∈(П/4√2,arc sin√3/3).