若方程lg(kx)=2lg(2x+1)只有一个实数解,则常数k的取值范围是?
问题描述:
若方程lg(kx)=2lg(2x+1)只有一个实数解,则常数k的取值范围是?
答
lg(kx)=2lg(2x+1)=lg(2x+1)^2
kx=(2x+1)^2=4x^2+4x+1
4x^2+(4-k)x+1=0,
只有一个实数解△=0;
△=(4-k)^2-4*4=0
4-k=±4,
k=8,0(因为定义kx≠0,所以舍)
k=8