已知函数y=sin的平方x+2sin xsin〈2分子派-x〉+3sin的平方 〈2分之3派-x〉 若tan x=2分之1 求此函数的值

问题描述:

已知函数y=sin的平方x+2sin xsin〈2分子派-x〉+3sin的平方 〈2分之3派-x〉 若tan x=2分之1 求此函数的值

y=sin^2x+2sin xsin(π/2-x)+3sin^2(3π/2-x)
=sin^2x+2sinxcosx+3cos^2x
这里令tanx=t,t=1/2,1/t=2
利用sin^2x=tan^2x/(1+tan^2x)=t^2/(1+t^2)
cos^2x=1/(1+tan^2x)=1/(1+t^2)
y=t^2/(1+t^2)+2t/(1+t^2)+3/(1+t^2)
=(t^2+2t+3)/(1+t^2)
=(1+2/t+3/t^2)/(1/t^2+1)
=(1+4+3*4)/(4+1)
=17/5