柯西不等式的证明 1/(2a)+1/(2b)+1/(2c)>=1/(a+b)+1/(b+c)+1/(c+a)
问题描述:
柯西不等式的证明 1/(2a)+1/(2b)+1/(2c)>=1/(a+b)+1/(b+c)+1/(c+a)
答
用均值不等式可知:
1/a+1/b=(a+b)/(ab)≥4/(a+b).(1)
1/a+1/c=(a+c)/(ac)≥4/(a+c).(2)
1/c+1/b=(c+b)/(cb)≥4/(c+b).(3)
(1)+(2)+(3)然后左右两边同时除以4得:
1/(2a)+1/(2b)+1/(2c)≥1/(b+c)+1/(c+a)+1/(a+b).(a+b)/(ab)≥4/(a+b)请问这一步怎么得出的?谢谢(a-b)^2≥0 (a+b)^2≥4ab所以(a+b)/4≥ab/(a+b)然后将它们倒过来,符号改变。就是(a+b)/(ab)≥4/(a+b)不理解再问