已知数列{an}的前四项依次为a1=1/1×2,a2=1/2×3,a3=1/3×4,a4=1/4×5.

问题描述:

已知数列{an}的前四项依次为a1=1/1×2,a2=1/2×3,a3=1/3×4,a4=1/4×5.
(1)猜想出数列{an}的通项公式.
(2)设数列{an}前n项和为Sn,求S5.
ps:里面的a和S后面带的n和数字都在右下方额!

(1)a1=1/1x2=1/1x(1+1)a2=1/2x3=1/2x(2+1)a3=1/3x4=1/3x(3+1).an=1/n(n+1)(2)a1=1/1x2=1-1/2a2=1/2x3=1/2-1/3.an=1/n-1/(n+1)Sn=a1+a2+.an=1-1/2+1/2-1/3+.+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)S5=5/(5+1)=5/6