已知复数z1=-2根号3-2i,z2=-1+(根号3)i,求:(1)计算z=z1/z2
问题描述:
已知复数z1=-2根号3-2i,z2=-1+(根号3)i,求:(1)计算z=z1/z2
求:
(1)计算z=z1/z2
(2)在复平面z2、z分别表示复数z2、z所对应的点,O为原点,求三角形OZ2Z的面积
答
(1)
z1 = -2√3-2i
z2 = -1+√3i
z = z1/z2 = (-2√3-2i)/(-1+√3i)
上下同乘以(-1-√3i)
得:z = (-2√3-2i)*(-1-√3i) / (1+3) = 8i/4 = 2i
z = 2i
(2)
z = 2i
z2 = -1+√3i
则在复平面中
z的坐标为(0,2)
z2的坐标为(-1,√3)
则S△OZ2Z = 2 * 2 * 1/2 = 2