已知园o方程x^2+y^2-2=0园o'方程x^2+y^2-8y+10=0由动点p向o和o'做切线长相等p轨迹方程
问题描述:
已知园o方程x^2+y^2-2=0园o'方程x^2+y^2-8y+10=0由动点p向o和o'做切线长相等p轨迹方程
答
设点P坐标为P(X,Y),由已知条件得圆O原点是O(0,0)半径R=√2,圆O'方程变形为X^2+(Y-4)^2-6=0,则圆心O'(0,4),半径R'=√6.根据勾股定理点P到两圆的距离分别是L1=X^2+(Y-4)^2-6L2=X^2+Y^2-2两切线相等则X^2+(Y-4)^2...