探究一:如图,正△ABC中,E为AB边上任一点,△CDE为正三角形,连接AD,猜想AD与BC的位置关系,并说明理由. 探究二:如图,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三
问题描述:
探究一:如图,正△ABC中,E为AB边上任一点,△CDE为正三角形,连接AD,猜想AD与BC的位置关系,并说明理由.
探究二:如图,若△ABC为任意等腰三角形,AB=AC,E为AB上任一点,△CDE为等腰三角形,DE=DC,且∠BAC=∠EDC,连接AD,猜想AD与BC的位置关系,并说明理由.
答
(1)AD与BC的位置关系为AD∥BC;∵△ABC和△DEC是正三角形,∴△ABC∽△DEC,∠ACB=∠DCE=60°.∴ACBC=DCEC,∠DCA=∠ECB.∴△ACD∽△BCE.∴∠DAC=∠EBC=60°.∴∠DAC=∠ACB.∴AD∥BC.(2)AD与BC的位置关系...