求证:(1+sinx-cosx)/(1+sinx+cosx)=tan(x/2)

问题描述:

求证:(1+sinx-cosx)/(1+sinx+cosx)=tan(x/2)

记s=sin(x/2) c=cos(x/2)
则sinx=2sin(x/2)cos(x/2)=2sc
cos(x)=2cos(x/2)cos(x/2)-1=2cc-1
要证(1+sinx-cosx)/(1+sinx+cosx)=tan(x/2)
只需证(1+2sc-2cc+1)/(1+2sc+2cc-1)=s/c
(2sc-2cc+1+1)/(1+2sc+2cc-1)
=【2(sc+ss)】【2(sc+cc)】=s/c
即当分母不为零,得证
情况二
分母为零,
由tan的定义域,x≠180+ 2k*180
由化一公式即sin(x+45)=-(根号2/2),
x=-90+ k*360 或x=-180+ k*360 (后面的x不在定义域,舍去) (k为整数)
所以当x=-90+ k*360 ,以上命题为否命题,即错误

证明:
(1+sinx-cosx)/(1+sinx+cosx)
= [(1-cosx)+sinx]/[(1+cosx)+sinx]
= {2*[sin(x/2)]^2+2sin(x/2)cos(x/2)}/{2*[cos(x/2)]^2+2sin(x/2)cos(x/2)}
= sin(x/2)/cos(x/2)
= tan(x/2)