实数x,y满足3x^2+2y^2=6x,求x^2+y^2的最小值和最大值

问题描述:

实数x,y满足3x^2+2y^2=6x,求x^2+y^2的最小值和最大值

3x^2+2y^2=6x,
(x-1)^2+y^2/[√(3/2)]^2=1.
此方程为:椭圆方程,长轴长a=√6/2,b=1.则有:
参数方程为:
X=1+cosa,y=√6/2*sina.
x^2+y^2=(1+cosa)^2+(√6/2*sina)^2
=-1/2*cos^2a+2cosa+5/2
=-1/2(cosa-2)^2+9/2.
当cosa=1时,x^2+y^2有最大值,最大=4,
当cosa=-1时,x^2+y^2有最小值,最小=0.