若实数a、b满足a²=7-3a,b²=7-3b,则代数式a/b+b/a之值为
问题描述:
若实数a、b满足a²=7-3a,b²=7-3b,则代数式a/b+b/a之值为
请给出详细说明
答
因为a²=7-3a,b²=7-3b所以a²-b²=7-3a-(7-3b)a+b=-3a²+b²=7-3a+(7-3b)=14+3*3=232ab=(a+b)^2-(a²+b²)ab=-7a/b+b/a=(a²+b²)/ab=-23/7因为a²=7-3a,b²=7-3b所以a²-b²=7-3a-(7-3b)a+b=-3??不懂还望大侠指教a²-b²=7-3a-(7-3b)(a-b)*(a+b)=-3(a-b)a《》b时a+b=-3答案应该为-23/7或2