已知函数f(x)=cos^2(x/2)—sin^2(x/2)-sinx.1:求f(x)的最小正周期

问题描述:

已知函数f(x)=cos^2(x/2)—sin^2(x/2)-sinx.1:求f(x)的最小正周期

因为cos^2(x)-sin^2(x)=cos2x
f(x)=cosx-sinx=根号2倍的sin(pi/4-x),T=2pi

cos^2x/2-sin^2x/2-sinx
=cosx-sinx
=√2(√2/2cosx-√2/2sinx)
=√2(sinπ/4cosx-cosπ/4sinx)
=√2sin(π/4-x)
T=|2π/w|
=|2π/(-1)|
=|-2π|=2π