求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.
问题描述:
求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.
答
因为圆过A、B两点,所以圆心在线段AB的垂直平分线上.由kAB=4-21-3=-1,AB的中点为(2,3),故AB的垂直平分线的方程为y-3=x-2,即x-y+1=0.又圆心在直线y=0上,因此圆心坐标是方程组的解,即圆心坐标为(-1,0)x-y...