设函数f(x)=x^3-( 9/2)x^2+6x-a,若方程f(x)=0有且仅有一个实数根,求a的取值范围
问题描述:
设函数f(x)=x^3-( 9/2)x^2+6x-a,若方程f(x)=0有且仅有一个实数根,求a的取值范围
答
把它看成是y1=x^3-( 9/2)x^2+6x与y2=a的交点个数
讲y1求导,得出极大值与极小值,再根据这个值画出大致图像
y2是常数函数,于y轴垂直,
接着就去看看y2=a在什么范围内会跟y1只有1个交点,求出来的a就是题目要求的范围了