已知抛物线y=ax²+bx+c与x轴交与A、B两点,与y轴交与点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x²-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
问题描述:
已知抛物线y=ax²+bx+c与x轴交与A、B两点,与y轴交与点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x²-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求此抛物线的表达式
(2)连接AC、BC、,若点E是线段AB上的一个动点(与点A、点B不重合),过点E做EF//AC交与点F,连接CE,设AE的长为m,⊿CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上说明S是否存在最大值,若存在,请求出S的最大值,并求出此点E的坐标,判断此时⊿BCE的形状;若不存在,请说明理由.
答
知抛物线y=ax²+bx+c与x轴交与A、B两点,与y轴交与点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x²-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求此抛物线的表达...