求平行于直线X+Y-3=0且与圆X方+Y方-6X-4Y+5=0相切的直线方程.

问题描述:

求平行于直线X+Y-3=0且与圆X方+Y方-6X-4Y+5=0相切的直线方程.

设所求直线方程为x+y+c=0
∵直线与圆相切,圆心﹙3,2﹚,半径2√2
∴圆心﹙3,2﹚到直线的距离d=|3+2+c|√2=2√2
解得c=-1或-9
∴所求直线方程为x+y-1=0或x+y-9=0