若实数a不等于b,且a b满足a-8a+5=0,b-8b+5=0,则代数式(b-1)/(a-1)+(a-1)/(b-1)的值为?

问题描述:

若实数a不等于b,且a b满足a-8a+5=0,b-8b+5=0,则代数式(b-1)/(a-1)+(a-1)/(b-1)的值为?

a,b为x-8x+5=0的两根 a+b=8,ab=5 (b-1)/(a-1)+(a-1)/(b-1) =[(b-1)+(a-1)]/(a-1)(b-1) =(a+b-2b-2a+2)/(ab-a-b+1) =((a+b)-2ab-2(a+b)+2)/(ab-(a+b)+1) =(64-10-16+2)/(5-8+1) 下面自己算吧...