过抛物线焦点F的直线交抛物线于P,Q两点,弦PQ的垂直平分线交抛物线的对称轴于R,求证:丨FR丨=1/2丨PQ丨

问题描述:

过抛物线焦点F的直线交抛物线于P,Q两点,弦PQ的垂直平分线交抛物线的对称轴于R,求证:丨FR丨=1/2丨PQ丨

【用“参数法”,请慢慢看.】证明:不妨设抛物线方程为y²=2px.(p>0).则焦点F(p/2,0).因点P,Q均在抛物线上,故可设P(2pa²,2pa),Q(2pb²,2pb).(a≠b).∵三点P,F.Q共线,∴有4ab=-1.【1】可设点R(t,0),则|P...