如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F. 求证:(1)△ABD≌△ACE; (2)AF平分∠BAC.

问题描述:

如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F.
求证:(1)△ABD≌△ACE;
(2)AF平分∠BAC.

证明:(1)∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,在△ABD和△ACE中,∠ADB=∠AEC∠BAD=∠CAEAB=AC,∴△ABD≌△ACE(AAS).(2)∵△ABD≌△ACE,∴AE=AD,在Rt△AEF和Rt△ADF中,AF=AFAE=AD,∴Rt△AEF≌R...