已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实数p的取值范围.

问题描述:

已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实数p的取值范围.

二次函数f(x)在区间[-1,1]内至少存在一个实数c,使f(c)>0的否定是:
对于区间[-1,1]内的任意一个x都有f(x)≤0,

f(1)≤0
f(−1)≤0

4−2(p−2)−2p2−p+1≤0
4+2(p−2)−2p2−p+1≤0

整理得
2p2+3p−9≥0
2p2−p−1≥0

解得p≥
3
2
,或p≤-3,
∴二次函数在区间[-1,1]内至少存在一个实数c,
使f(c)>0的实数p的取值范围是(−3,
3
2
)