已知中心在坐标原点,焦点在y轴上的椭圆C的上下焦点F1,F2,短轴的一个端点到一个焦点的距离为根号二椭圆上的点到一个焦点的最大距离为根号二加一 求椭圆方程 【2】AB是过F1的一条动弦,求三角形ABF2面积的最大值
问题描述:
已知中心在坐标原点,焦点在y轴上的椭圆C的上下焦点F1,F2,短轴的一个端点到一个焦点的距离为根号二
椭圆上的点到一个焦点的最大距离为根号二加一 求椭圆方程 【2】AB是过F1的一条动弦,求三角形ABF2面积的最大值
答
依题设,得 椭圆方程为y²/a²+x²/b²=1(a>b>0)
短轴的一个端点到一个焦点的距离为√2,即 √(b²+c²)=√2=a
椭圆上的点到一个焦点的最大距离为√2+1,即 a+c=√2+1
∴ a=√2 b=c=1 椭圆方程为y²/2+x²=1
依题设,得 F1(0,1) F2(0,-1)
若直线AB的斜率不存在,构不成三角形,故存在,设方程为y=kx+1
代入椭圆方程,得 (kx+1)²+2x²=2 即 (k²+2)x²+2kx-1=0
设A(x1,y1),B(x2,y2),则 x1+x2=-2k/(k²+2) x1*x2=-1/(k²+2)
∴ |AB|=√(1+k²)|x1-x2| F2到直线AB的距离为d=2/√(1+k²)
则 S△ABF2=|AB|*d/2=|x1-x2|=√[(x1+x2)²-4x1*x2]
=√{2-2[2/(k²+2)-1]²}≤√2 k=0时,取等
最大值为√2