已知椭圆E中心在原点O,焦点在X轴上,其离心率e=根号(2/3),过C(-1,0)的直线L与椭圆E相交于A,B两点,且满足向量AC=2向量CB.1,用直线L的斜率K(k不等于0)表示三角形OAB的面积2,当三角形OAB的面积最大时,求椭圆E的方程

问题描述:

已知椭圆E中心在原点O,焦点在X轴上,其离心率e=根号(2/3),过C(-1,0)的直线L与椭圆E相交于A,B两点,且满足向量AC=2向量CB.
1,用直线L的斜率K(k不等于0)表示三角形OAB的面积
2,当三角形OAB的面积最大时,求椭圆E的方程

(1)设椭圆E的方程为x²/a²+y²/b²=1(a>b>0),由e=c/a=√(2/3)得,a²=3b².故椭圆方程为x²+3y²=3b².设A(x1,y1)、B(x2、y2).由于点C(-1,0)分向量AB的比为2,...