椭圆的中心在原点O,焦点在X轴上,离心率为e,椭圆E的中心在原点O,焦点在X轴上,离心率为e,且m=(3e,-1),n=(e,2),m垂直n,过点C(-1,0)的直线L交椭圆于A,B两点且满足向量BA=(p+1)BC(P>=3).若p变化,当三角形OAB的面积取最大值时,求椭圆的方程.

问题描述:

椭圆的中心在原点O,焦点在X轴上,离心率为e,
椭圆E的中心在原点O,焦点在X轴上,离心率为e,且m=(3e,-1),n=(e,2),m垂直n,过点C(-1,0)的直线L交椭圆于A,B两点且满足向量BA=(p+1)BC(P>=3).若p变化,当三角形OAB的面积取最大值时,求椭圆的方程.