证明:(1+sin4θ-cos4θ)/(1+sin4θ+cos4θ)=2tanθ/(1-tanθ平方)

问题描述:

证明:(1+sin4θ-cos4θ)/(1+sin4θ+cos4θ)=2tanθ/(1-tanθ平方)

1+sin40-cos40=1+sin40-(1-2(sin20)^2)
=1+sin40-1+2(sin20)^2
=2sin20cos20+2(sin20)^2
=2sin20(cos20+sin20)
1+sin40+cos40=1+sin40+2(cos20)^2-1
=sin40+2(cos20)^2
=2cos20(sin20+cos20)
∴ (1+sin40-cos40)/(1+sin40+cos40)=[2sin20(cos20+sin20)]/2cos20(sin20+cos20)
=sin20/cos20
=tan20
=sin20/cos20=2sin0cos0/[(cos0)^2-(sin0)^2])
=(2sin0/cos0)/[(cos0)^2/(cos0)^2-(sin0)^2/(cos0)^2
=2tan0/(1-(tan0)^2)
即 (1+sin40-cos40)/(1+sin40+cos40)=2tan0/(1-(tan0)^2)

证明之前,先复习几个三角函数公式:sin²α+cos²α=1sin2α=2sinαcosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²αtan2α=2tanα/(1-tan²α)证明:左边= (1+sin4θ-co...