求证:1+sin4θ−cos4θ2tanθ=1+sin4θ+cos4θ1−tan2θ.
问题描述:
求证:
=1+sin4θ−cos4θ 2tanθ
. 1+sin4θ+cos4θ 1−tan2θ
答
要证
=1+sin4θ−cos4θ 2tanθ
,1+sin4θ+cos4θ 1−tan2θ
只需证
=1+2sin2θcos2θ−(1−2sin22θ) 2tanθ
,1+2sin2θcos2θ+2cos22θ−1 1−tan2θ
即证
=2sin2θ(sin2θ+cos2θ) 2tanθ
,2cos2θ(sin2θ+cos2θ) 1−tan2θ
即证
=sin2θ 2tanθ
,即证cos2θ 1−tan2θ
=sin2θ cos2θ
,2tanθ 1−tan2θ
只需证tan2θ=
,2tanθ 1−tan2θ
由二倍角的正切公式可知上式正确,
故原命题得证.