求证:1+sin4θ−cos4θ2tanθ=1+sin4θ+cos4θ1−tan2θ.

问题描述:

求证:

1+sin4θ−cos4θ
2tanθ
=
1+sin4θ+cos4θ
1−tan2θ

要证

1+sin4θ−cos4θ
2tanθ
=
1+sin4θ+cos4θ
1−tan2θ

只需证
1+2sin2θcos2θ−(1−2sin22θ)
2tanθ
=
1+2sin2θcos2θ+2cos22θ−1
1−tan2θ

即证
2sin2θ(sin2θ+cos2θ)
2tanθ
=
2cos2θ(sin2θ+cos2θ)
1−tan2θ

即证
sin2θ
2tanθ
=
cos2θ
1−tan2θ
,即证
sin2θ
cos2θ
=
2tanθ
1−tan2θ

只需证tan2θ=
2tanθ
1−tan2θ

由二倍角的正切公式可知上式正确,
故原命题得证.