a,b,c为正整数,且a的平方+b的立方=c的4次方,求c的最小值
问题描述:
a,b,c为正整数,且a的平方+b的立方=c的4次方,求c的最小值
请用初二的方法解
答
a、b、c应为正整数
c如果可以取负数,那没有最小值
a^2+b^3=c^4
b^3=c^4-a^2
b^2*b=(c^2+a)*(c^2-a)
c^2+a=b^2
c^2-a=b
两式相加:
2c^2=b^2+b
8c^2+1=(2b+1)^2
c=1,b=1,a=0不符合题目要求
c=6,b=8,a=28
28^2+8^3=6^4
c最小为6