求证:三角形三条边的垂直平分线相交于一点.

问题描述:

求证:三角形三条边的垂直平分线相交于一点.

证明:∵XX′,YY′分别是△ABC的BC边与AC边的中垂线,
∴XX′,YY′必相交于一点,设为O(否则,XX′∥YY′,那么∠C必等于180°,这是不可能的).
∵OB=OC,OC=OA,
∴OB=OA,
∴O点必在AB的垂直平分线ZZ′上,
∴XX′,YY′,ZZ′相交于一点.