如图,将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD的中点,那么异面直线AE、BC所成的角的正切值为_.

问题描述:

如图,将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD的中点,那么异面直线AE、BC所成的角的正切值为______.

如图所示:设正方形ABCD的边长为x,取BD的中点为F,∵平面ABD⊥平面CBD,E是CD的中点,
故AF⊥平面BCD,EF平行且等于BC的一半,∠AEF为异面直线AE、BC所成的角,且AF=

2
2
x,EF=
1
2
x

直角三角形AEF中,tan∠AEF=
AF
EF
=
2

故答案为
2