将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD的中点,则异面直线AE、BC所成角的正切值为( ) A.2 B.22 C.2 D.12
问题描述:
将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD的中点,则异面直线AE、BC所成角的正切值为( )
A.
2
B.
2
2
C. 2
D.
1 2
答
连接BD,设正方形中心为O,设正方形ABCD边长为2,连接OE、AO,
则AO⊥BD,OE=1,AO=
2
∵AO⊥BD,且平面ABD⊥平面CBD,
∴AO⊥平面CBD,
∴AO⊥OE,
又O是BD中点,E是CD的中点,
∴OE∥BC,
∴∠AEO是AE与BC所成的角
异面直线AE、BC所成角的正切值tan∠AEO=
=AO OE
2
故选A