如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.

问题描述:

如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.

证明:在△ABC和△ADC中,

AB=AD
CB=CD
AC=AC

∴△ABC≌△ADC(SSS),
∴∠BCA=∠DCA,
∵PE⊥BC于E,PF⊥CD于F,
∴PE=PF.