设函数f(x)·g(x)在区间(a,b)内单调递增,证明函数h(x)=max{f(x),g(x)}与h(x)=min{f(x),g(x)}也在(a,b)递

问题描述:

设函数f(x)·g(x)在区间(a,b)内单调递增,证明函数h(x)=max{f(x),g(x)}与h(x)=min{f(x),g(x)}也在(a,b)递

分三种情况讨论:为了方便说明,我把MAX设为hx,MIN设为jx,括号就不打了哈.1,f(x),g(x)没有交点,不妨设f(x)>g(x),显然h(x)max=f(x),h(x)min=F(x)=g(x),结论显然.2,只有两个个交点不妨设为A(x1,y1)B(x2,y2),在A点之前...