1.设函数f(x)在闭区间[a,b]上连续,且f(a)〈a,f(b)〉b,试证:在开区间(a,b)内,至少存在一个点ξ,使得f(ξ)=ξ
问题描述:
1.设函数f(x)在闭区间[a,b]上连续,且f(a)〈a,f(b)〉b,试证:在开区间(a,b)内,至少存在一个点ξ,使得f(ξ)=ξ
2.设函数f(x)在闭区间[a,b]上连续,且a
答
1、设g(x)=f(x)-x,g(x)在【a,b】上连续,g(a)=f(a)-a0,由零点定理得,至少存在一点ε在(a,b),使得g(ε)=0,即f(ε)=ε
2、∵f(x)是闭区间(a,b)上的连续函数
∴f(x)在闭区间(a,b)上必有最大值Fmax,也必有最小值Fmin
同时,对于任一实数r ,若有Fmin≤r≤Fmax,则:
直线 y = r与曲线 y = f(x)必有至少1个交点,即:
至少有一ξ∈(a,b),使得f(ξ) = r
现考察1/3 ×[f(x1)+f(x2)+f(x3)]≤ 1/3 ×(Fmax+Fmax+Fmax)= Fmax;
同理:1/3 ×[f(x1)+f(x2)+f(x3)]≥Fmin
令r = 1/3 ×[f(x1)+f(x2)+f(x3)],即得所求结论.