求lim n→∞(1/n^2 + 2/n^2 +...+ n/n^2 )

问题描述:

求lim n→∞(1/n^2 + 2/n^2 +...+ n/n^2 )
=lim n→∞ 1+2+...+n/n^2
=lim n→∞ (1+n)n / 2n^2 这一步怎么来的?
=1/2 lim n→∞(1+1/n) 这一步怎么来的?
=1/2

导什么数
lim n→∞(1/n^2 + 2/n^2 +...+ n/n^2 )
(1/n^2 + 2/n^2 +...+ n/n^2 )=(1+2+3+...+n)/n^2
上面用等差数列求和公式
(1+2+3+...+n)/n^2 =(1+n)*n/2*n^2=(1+n)/2n 把1/2提出来
=1/2 * (1/n+1)
n→∞,(1/n+1)=1
所以极限为1/2