|X1+X2+.+Xn|≤|X1|+|X2|+.+|Xn|用数学归纳法解.
问题描述:
|X1+X2+.+Xn|≤|X1|+|X2|+.+|Xn|用数学归纳法解.
答
这问题不严谨.
如果解这道题的时候,你可以用|a+b|≤|a|+|b|的话,问题显然很简单,就如一楼解得一样那样解.
但不能用|a+b|≤|a|+|b|的话,只能这样.
①当n=1时,|x1|=|x1|,显然成立.
②当n=2时,(|x1+x2|)2≤(|x1|+|x2|)2显然成立.(括号后面的是平方)
假设当n=k时,结论成立.即
|x1+x2+…+xk|≤|x1|+|x2|+…|xk|成立.
设h=|x1+x2+…+xk|,h=|x1|+|x2|+…|xk|,则|x1+x2+…+xk+x(k+1)|≤|m+x(k+1)|
显然|m+x(k+1)|≤|m|+|x(k+1)|≤h+|x(k+1)|
由①②知,命题对任何正整数n都成立.
注:这一部分的内容不知道是哪个层次的,如果不能用|a+b|≤|a|+|b|的话,就只能以平方来倒出来.我刚刚才开始,①②都是复制过来的,如果解得看着不明白就留个言,或则留下地址吧.我给你用word之类的解了发过去吧.