一道数学归纳证明题X1,X2,X3...Xn (n∈N)为非负实数,且X1+X2+...Xn≤1/2,试用归纳法证明(1-X1)(1-X2)...(1-Xn)≥1/2

问题描述:

一道数学归纳证明题
X1,X2,X3...Xn (n∈N)为非负实数,且X1+X2+...Xn≤1/2,试用归纳法证明(1-X1)(1-X2)...(1-Xn)≥1/2

直接归纳法证明本题,应该是不可能,因为右边是一个常数1/2.这个是伯努力不等式.只要X1,X2,X3...Xn (n∈N)为同号,都大于 -1 ,则(1-X1)(1-X2)...(1-Xn)≥1 - X1-X2-...Xn.n= 2时候很容易验证.假设 对k成立,则(1-X1)(1-X...