求证f(x)=x3在R为增函数
问题描述:
求证f(x)=x3在R为增函数
答
任取x1>x2
则f(x1)=x1^3 ,f(x2)=x2^3
f(x1)-f(x2)=x1^3-x2^3=(x1-x2)(x1^2+x1x2+x2^2)
∵x1>x2
∴x1-x2>0
∵x1^2+x1x2+x2^2恒大于0
即f(x1)-f(x2)>0
∴f(x1)>f(x2)
∴f(x)=x^3在R为增函数