在x∈[12,2]上,函数f(x)=x2+px+q与g(x)=3x2+32x在同一点取得相同的最小值,那么f(x)在x∈[12,2]上的最大值是(  ) A.134 B.4 C.8 D.54

问题描述:

在x∈[

1
2
,2]上,函数f(x)=x2+px+q与g(x)=
3x
2
+
3
2x
在同一点取得相同的最小值,那么f(x)在x∈[
1
2
,2]上的最大值是(  )
A.
13
4

B. 4
C. 8
D.
5
4

∵在x∈[

1
2
,2]上,g(x)=
3x
2
+
3
2x
≥2
3x
2
×
3
2x
=3,当且仅当x=1时等号成立
∴在x∈[
1
2
,2]上,函数f(x)=x2+px+q在x=1时取到最小值3,
p
2
=1
1+p+q=3
解得p=-2,q=4
∴f(x)=x2-2x+4=(x-1)2+4,
∴当x=2时取到最大值4
故选B