在区间[1/2,2]上函数f(x)=x2+px+q与g(x)=x+1/x在同一点取得相同的最小值,求f(x)在区间[1/2,2]上的最大值
问题描述:
在区间[1/2,2]上函数f(x)=x2+px+q与g(x)=x+1/x在同一点取得相同的最小值,求f(x)在区间[1/2,2]上的最大值
答
g(x)min=g(1)=2
所以f(x)min=f(1)
所以对称轴-p/2=1
p=-2
f(1)=1-2+q=g(1)=2
q=3
f(x)=x^2-2x+3
因为对称轴x=1在[1/2,2]内
所以f(x)max在x=2或x=1/2处取到
因为f(2)>f(1/2)
f(x)max=f(2)=3