若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩阵,并求A^(-1)(1)若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵;(2)若A满足A^2+2A+3E=0,证明A是可逆矩阵,并求A^(-1)

问题描述:

若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩阵,并求A^(-1)
(1)若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵;
(2)若A满足A^2+2A+3E=0,证明A是可逆矩阵,并求A^(-1)