f(x)=1/1+1^2=1/2,当 x=2时f(x)的值即f(2)=1/2+2^2,求f(1)+f(2)+.+f(2013) =?

问题描述:

f(x)=1/1+1^2=1/2,当 x=2时f(x)的值即f(2)=1/2+2^2,求f(1)+f(2)+.+f(2013) =?

f(x)=1/x - 1/(x+1)
f(1)+f(2)+.+f(2013) =(1-2/2)+(1/2-1/3)+...+(1/2013-1/2014)=1-1/2014=2013/2014