质量为m的光滑小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的最小速度是v,则当小球以2v的速度经过最高点时,对轨道压力的大小是(  ) A.0 B.mg C.3mg D.5mg

问题描述:

质量为m的光滑小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的最小速度是v,则当小球以2v的速度经过最高点时,对轨道压力的大小是(  )
A. 0
B. mg
C. 3mg
D. 5mg

当小球以速度v经轨道最高点时,恰好不脱离轨道,小球仅受重力,重力充当向心力,则有:
mg=m

v2
R

可得:v=
gR

设小球以速度2v经过轨道最高点时,小球受重力mg和轨道向下的支持力N,由合力充当向心力,根据牛顿第二定律有:
N+mg=m
(2v)2
R

联立解得:N=3mg
又由牛顿第三定律得到,小球对轨道的压力与轨道对小球的支持力相等,有:N′=N=3mg;
故选:C.