如图已知△ABC中,∠B和∠C外角平分线相交于点P. (1)若∠ABC=30°,∠ACB=70°,求∠BPC度数. (2)若∠ABC=α,∠BPC=β,求∠ACB度数.

问题描述:

如图已知△ABC中,∠B和∠C外角平分线相交于点P.

(1)若∠ABC=30°,∠ACB=70°,求∠BPC度数.
(2)若∠ABC=α,∠BPC=β,求∠ACB度数.

(1)∠BPC
=180°-(

1
2
∠EBC+
1
2
∠BCF)
=180°-
1
2
(∠EBC+∠BCF)
=180°-
1
2
(180°-∠ABC+180°-∠ACB)
=180°-
1
2
(180°-30°+180°-70°)
=50°;
(2)∠BPC=180°-
1
2
(180°-∠ABC+180°-∠ACB)
=
1
2
(∠ABC+∠ACB),
∵∠BPC=β,∠ABC=α,
∴β=
1
2
(α+∠ACB).
故∠ACB=2β-α.