如图已知△ABC中,∠B和∠C外角平分线相交于点P. (1)若∠ABC=30°,∠ACB=70°,求∠BPC度数. (2)若∠ABC=α,∠BPC=β,求∠ACB度数.
问题描述:
如图已知△ABC中,∠B和∠C外角平分线相交于点P.
(1)若∠ABC=30°,∠ACB=70°,求∠BPC度数.
(2)若∠ABC=α,∠BPC=β,求∠ACB度数.
答
(1)∠BPC
=180°-(
∠EBC+1 2
∠BCF)1 2
=180°-
(∠EBC+∠BCF)1 2
=180°-
(180°-∠ABC+180°-∠ACB)1 2
=180°-
(180°-30°+180°-70°)1 2
=50°;
(2)∠BPC=180°-
(180°-∠ABC+180°-∠ACB)1 2
=
(∠ABC+∠ACB),1 2
∵∠BPC=β,∠ABC=α,
∴β=
(α+∠ACB).1 2
故∠ACB=2β-α.