求数列的前n项和:1+1,1/a+4,1/a2+7,…,1/an−1+3n−2,….

问题描述:

求数列的前n项和:1+1,

1
a
+4,
1
a2
+7,…,
1
an−1
+3n−2,….

Sn=(1+1)+(

1
a
+4)+(
1
a2
+7)+…+(
1
an−1
+3n−2)
将其每一项拆开再重新组合得Sn=(1+
1
a
+
1
a2
+…+
1
an−1
)+(1+4+7+…+3n−2)

当a=1时,Sn=n+
(3n−1)n
2
=
(3n+1)n
2

当a≠1时,Sn
1−
1
an
1−
1
a
+
(3n−1)n
2
=
a−a1−n
a−1
+
(3n−1)n
2