实数x、y满足x2+y2=4,则x+y-xy的最大值为_.
问题描述:
实数x、y满足x2+y2=4,则x+y-xy的最大值为______.
答
∵实数x、y满足x2+y2=4,∴可设x=2cosθ,y=2sinθ.令t=sinθ+cosθ=2sin(θ+π4)(θ∈[0,2π)),∴t∈[−2,2].则t2=1+2sinθcosθ,可得2sinθcosθ=t2-1.∴x+y-xy=2cosθ+2sinθ-4sinθcosθ=2t-2(t2-1)...