二阶矩阵A只有一个线性无关的特征向量,为什么A的特征值必定是二重根

问题描述:

二阶矩阵A只有一个线性无关的特征向量,为什么A的特征值必定是二重根

因为不同特征值的特征根是线性无关的
假定两个特征值s1,s2对应的特征根分别为x1,x2
Ax1 = s1 x1
Ax2 = s2 x2
如果x1,x2线性相关,则必有kx1 =x2
所以Ax2 =s2 x2 =>Ax1 =s2 x1
所以Ax1 = s1 x1 =s2x1
这显然和s1,s2不等矛盾