已知函数y=f(x)的图象经过坐标原点,且f′(x)=2x-1,数列{an}的前n项和Sn=f(n)(n∈N*) (1)求数列{an}的通项公式; (2)若数列{bn}满足an+log3n=log3bn求数列{bn}的前n项和.
问题描述:
已知函数y=f(x)的图象经过坐标原点,且f′(x)=2x-1,数列{an}的前n项和Sn=f(n)(n∈N*)
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an+log3n=log3bn求数列{bn}的前n项和.
答
(1)由f′(x)=2x-1得:
f(x)=x2-x+b(b∈R)
∵y=f(x)的图象过原点,
∴f(x)=x2-x,
∴Sn=n2-n
∴an=Sn-Sn-1
=n2-n-[(n-1)2-(n-1)]
=2n-2(n≥2)
∵a1=S1=0
所以,数列{an}的通项公式为
an=2n-2(n∈N*)
(2)由an+log3n=log3bn得:
bn=n•32n-2(n∈N*)
Tn=b1+b2+b3++bn
=30+2•32+3•34++n•32n-2(1)
∴9Tn=30+2•32+3•34++n•32n(2)
(2)-(1)得:8Tn=n•32n−(30+32+34++32n−2)=n•32n−
32n−1 8
∴Tn=
-n•32n
8
=
32n−1 64
.(8n−1)32n+1+1 64